ECFA LC Workshop 2003

The Smoking Gun of BNV

Colour Topologies and String Hadronization in Baryon Number Violating Supersymmetry

P. Skands (speaker) & T. Sjöstrand, Lund University. Nucl. Phys. B659:243,2003; hep-ph/0209199

- 1. BNV SUSY: Quick Intro.
- 2. BNV SUSY in PYTHIA.
- 3. Colour topologies and hadronization.
- 4. Properties and predictions.
- 5. Conclusion.

BNV SUSY: Quick Introduction

Most general (MSSM) superpotential:

$$W = W_{\rm MSSM} + W_{\rm BNV} + W_{\rm LNV}$$

But LNV+BNV makes bad cocktail!

BNV SUSY: Quick Introduction

Most general (MSSM) superpotential:

$$W = W_{\text{MSSM}} + W_{\text{BNV}} + W_{\text{LNV}}$$

But LNV+BNV makes bad cocktail!

- To save proton, R, B, or L cons. imposed.
 - $ightharpoonup \mathbb{R}
 ightharpoonup \mathsf{CDM}$ candidate, but no deep motivation.
 - ightharpoonup B and L more robust with higher dimension operators.
- No clear-cut answer.

BNV SUSY: Quick Introduction

Baryon Number Violation in Superpotential:

$$W_{\rm BNV} = \lambda''_{ijk} \epsilon_{abc} \bar{U}_{ia} \bar{D}_{jb} \bar{D}_{kc}$$

(abc = colour, ijk = generation)

- Couplings between chiral multiplets.
 - Sfermions: 2-body decays.
 - Gauginos/Higgsinos: 3-body decays (via sfermion resonances).
- $\epsilon_{abc} \rightarrow$ 'baryonic' colour flow.
- (This talk is not about BNV in production.)

- 1. BNV SUSY: Quick Intro.
- 2. BNV SUSY in PYTHIA.
- 3. Colour topologies and hadronization.
- 4. Properties and predictions.
- 5. Conclusion.

BNV SUSY in PYTHIA

UDD (λ'') : \sim 200 new decay chanels

- Partial widths: tree-level ME's, massive t and b.
- Momentum distributions: isotropic 3-body phase space (good approx. when intermediate propagators way off shell, worse when only slightly off shell).
- Final state parton multiplicity increased by subsequent showers.
- Only MSSM pair production included.

- 1. BNV SUSY: Quick Intro.
- 2. BNV SUSY in PYTHIA.
- 3. Colour topologies and hadronization.
- 4. Properties and predictions.
- 5. Conclusion.

Colour topologies

'Ordinary' colour topology

(e.g.
$$Z^0 \rightarrow q\bar{q}$$
):

'Baryonic' colour topology

q \overline{q}

- How does such a system fragment?
- Could a Baryon excess be observed?

Colour topologies and hadronization

- Fundamental properties of QCD vacuum suggest string picture still applicable.
- String energy minimization + dipole picture => picture of 3 string pieces meeting at a 'string junction'.

(Warning: This picture was drawn in a "pedagogical projection" where distances close to the center are greatly exaggerated!)

The Smoking gun!

- The movement of the string junction is crucial, it is the smoke of the BNV gun!
- A junction is a topological feature of the string confinement field: $V(r) = \kappa r$. Each string piece acts on the other two with a constant force, $\kappa \vec{e}_r$.
- in junction rest frame (JRF) the angle is 120° between the string pieces.
- Or better, 'pull vectors' lie at 120°:

$$p_{\text{pull}}^{\mu} = \sum_{i=1,N} p_i^{\mu} e^{-\sum_{j=1}^{i-1} \frac{E_j}{\kappa}}$$

(since soft gluons 'eaten' by string)

Fragmentation

The movement of the string junction is crucial, it is the smoke of the BNV gun!

First 2 pieces fragmented outwards—in, junction baryon formed around junction, last string piece fragmented as ordinary $q\overline{q}$ string.

Intermezzo: more complicated topologies

Stop pair production at an LC:

a) 2 J baryons
b) No J baryons

Select: a) or b) based on string length measure.

Intermezzo: more complicated topologies

Stop pair production at an LC: a) 2 J baryons

Select: a) or b) based on string length measure.

Intermezzo: more complicated topologies

Colour flow in gluino decays:

Selected according to (off-shell) resonance propagators.

- 1. BNV SUSY: Quick Intro.
- 2. BNV SUSY in PYTHIA.
- 3. Colour topologies and hadronization.
- 4. Properties and predictions.
- 5. Conclusion.

Properties and Predictions

Dependence on Fragmentation assumptions:

Description is assymmetric but differences are small.

Properties and Predictions

Junction fragmentation implies:

• if leading jets are well separated, junction will be slow, and junction baryon will be at low momenta:

- 1. BNV SUSY: Quick Intro.
- 2. BNV SUSY in PYTHIA.
- 3. Colour topologies and hadronization.
- 4. Properties and predictions.
- 5. Conclusion.

Conclusion

- A model for BNV-SUSY allowing detailed studies available in PYTHIA.
- Special attention given to the nonperturbative aspects. Hadronization based on physical picture shows new aspects.
- Generic prediction (apologies to particle ID people!):
 The smoking Gun slow baryons.
- Junction fragmentation also used for multiple interactions, see friday morning talk in QCD/Generators session.